Strengthening the Cavitation Resistance of Cylinder Liners Using Surface Treatment with Electroless Ni-P (ENP) Plating and High-Temperature Heat Treatment.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hao Gao, Dong Liu, Qianting Wang, Enlai Zhang, Wenjuan Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : Materials (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 706177

 As internal combustion engines (ICEs) develop towards higher explosion pressures and lower weights, their structures need to be more compact
  thus, the wall thickness of their cylinder liners is reducing. However, intense vibrations in the cylinder liner can lead to coolant cavitation and, in severe cases, penetration of the liner, posing a significant reliability issue for ICEs. Therefore, research on cylinder liner cavitation has attracted increasing interest. Gray cast iron is widely used in cylinder liners for its hardness and wear resistance
  however, additional surface plating is necessary to improve cavitation resistance. This study developed a novel surface-modification technology using electroless Ni-P plating combined with high-temperature heat treatment to create cylinder liners with refined grains, low weight loss rate, and high hardness. The heat-treatment temperature ranged from 100 to 600 °C. An ultrasonic cavitation tester was used to simulate severe cavitation conditions, and we analyzed and compared Ni-P-plated and heat-treated Ni-P-plated surfaces. The findings showed that the combination of Ni-P plating with high-temperature heat treatment led to smoother, more refined surface grains and the formation of cellular granular structures. After heat treatment, the plating structure converted from amorphous to crystalline. From 100 to 600 °C, the weight loss of specimens was within the range of 0.162% to 0.573%, and the weight loss (80.2% lower than the plated surface) and weight loss rate at 600 °C were the smallest. Additionally, cavitation resistance improved by 80.1%. The microhardness of the heat-treated plated surface reached 895 HV at 600 °C, constituting a 306 HV (65.8%) increase compared with that of the unplated surface, and a 560 HV increase compared with that of the maximum hardness of the plated surface without heat treatment of 335 HV, with an enhancement rate of 62.6%.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH