The rolling system for stainless steel, particularly in the production of diamond plates, represents a complex industrial control scenario. The process requires precise load distribution to effectively manage pattern height, due to the high strength, hardness, and required dimensional accuracy of the material. This paper addresses the limitations of offline methods, which include heavy reliance on initial conditions, intricate parameter settings, susceptibility to local optima, and suboptimal performance under stringent constraints. A Multi-Objective Adaptive Rolling Iteration method that incorporates local constraints (MOARI-LC) is proposed. The MOARI-LC method simplifies the complex multi-dimensional nonlinear constrained optimization problem of load distribution, into a one-dimensional multi-stage optimization problem without explicit constraints. This simplification is achieved through a single variable cycle iteration involving reduction rate and rolling equipment selection. The rolling results of HBD-SUS304 show that the pattern height to thickness ratio obtained by MOARI-LC is 0.20-0.22, which is within a specific range of dimensional accuracy. It outperforms the other two existing methods, FCRA-NC and DCRA-GC, with results of 0.19~0.24 and 0.15~0.25, respectively. MOARI-LC has increased the qualification rate of test products by more than 25%, and it has also been applied to the other six industrial production experiments. The results show that MOARI-LC can control the absolute value of the rolling force prediction error of the downstream stands of the hot strip finishing rolls within 5%, and the absolute value of the finished stand within 3%. These results validate the scalability and accuracy of MOARI-LC.