Increasing the share of circulating scrap in produced castings is not only due to optimizing production costs, but also the need to protect the environment realized by reducing production energy intensity, generating less waste, mitigating greenhouse gas emissions, and consuming fewer natural resources. However, this is associated with maintaining the required properties of castings and considering the impact of impurities on the formation of the structure of aluminum alloys. This research concerns the AlSi10MnMg alloy, which introduces 50 to 75% (every 5%) of circulating scrap. This alloy is one of the most commonly used for producing gravity and pressure die-castings (HPDC), including engine parts and transport structural elements. Based on microscopic research, it was found that the increase in scrap content causes an increase in the share of iron, which results in pre-eutectic (from about 0.45 wt.% to 0.7 wt.% Fe) or even primary crystallization of iron phases (over 0.7 wt.% Fe), mainly the plate-needle phase β-Al