For the busting of heat, generated in electronic packages, relevant materials need to be developed. Metal matrix composites may be considered as an option to tailor the properties of a material (Cu) by incorporating an additional phase (SiC) for fulfilling the requirements of thermal management systems. The composite (Cu/SiC) was manufactured by friction stir processing. For good interfacial strength, the biggest challenge in the fabrication of Cu/SiC composite was to abolish the reaction between Cu and SiC. Being solid in nature, the process (friction stir processing) does not allow temperature to reach the interfacial interaction. Scanning electron microscopy, electron backscattered diffraction, and optical microscopy were used to characterise the composite for microstructural features (particle dispersion, phases present). To confirm the presence of reinforcement, EDS analysis was also performed on the composite. Results indicated the presence of Cu and SiC phases in the stir zone (SZ) with uniform and homogeneous separation of reinforcements. The composite displayed higher hardness, tensile strength, and wear resistance in comparison to unprocessed copper. However, ductility decreased due to high hardness in the composite.