Integration of Hyperspectral Imaging and Deep Learning for Discrimination of Fumigated Lilies and Prediction of Quality Indicator Contents.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sheng Wang, Xiufu Wang, Youyou Wang, Binbin Yan, Jian Yang, Pengfei Zhang, Zihua Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 570.752 Preserving biological specimens

Thông tin xuất bản: Switzerland : Foods (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 706588

The lily, valued for its edibility and medicinal properties, is rich in essential nutrients. However, storage conditions and sulfur fumigation during processing can degrade key nutrients like polysaccharides, phenols, and sulfur dioxide. To address this, we applied a deep learning model combined with hyperspectral imaging for the rapid prediction of nutrient quality. The CLSTM (convolutional neural network-long short-term memory) model, utilizing variable combination population analysis (VCPA) for wavelength selection, effectively differentiated sulfur fumigation patterns in lilies. In terms of nutrient content prediction, the CLSTM model combined with full-wavelength data demonstrated superior performance, achieving an R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH