Exploring the repository of de novo-designed bifunctional antimicrobial peptides through deep learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ruihan Dong, Fei Guo, Shiyuan Hou, Huarui Kang, Honglei Li, Jing Liu, Rongrong Liu, Yangang Liu, Ziyu Liu, Xiaohan Ma, Cheng Wang, Junping Wang, Xingan Wu, Sheng Ye, Gaomei Zhao, Ping Zhao, Cheng Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 809.008 History and description with respect to kinds of persons

Thông tin xuất bản: England : eLife , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 706938

Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden 'grammars' of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH