Partial Differential Equations Meet Deep Neural Networks: A Survey.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Wentao Feng, Zhenan He, Shudong Huang, Jiancheng Lv, Chenwei Tang, Caiyang Yu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : IEEE transactions on neural networks and learning systems , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 707160

Many problems in science and engineering can be mathematically modeled using partial differential equations (PDEs), which are essential for fields like computational fluid dynamics (CFD), molecular dynamics, and dynamical systems. Although traditional numerical methods like the finite difference/element method are widely used, their computational inefficiency, due to the large number of iterations required, has long been a challenge. Recently, deep learning (DL) has emerged as a promising alternative for solving PDEs, offering new paradigms beyond conventional methods. Despite the growing interest in techniques like physics-informed neural networks (PINNs), a systematic review of the diverse neural network (NN) approaches for PDEs is still missing. This survey fills that gap by categorizing and reviewing the current progress of deep NNs (DNNs) for PDEs. Unlike previous reviews focused on specific methods like PINNs, we offer a broader taxonomy and analyze applications across scientific, engineering, and medical fields. We also provide a historical overview, key challenges, and future trends, aiming to serve both researchers and practitioners with insights into how DNNs can be effectively applied to solve PDEs.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH