Combined transcriptomic and proteomic analyses reveal relevant myelin features in mice with ischemic stroke.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yi He, Desheng Li, Xiaojia Liu, Hao Lyu, Qiuyang Qian, Mei Shen, Qiwen Wang, Wei Wang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Functional & integrative genomics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 707295

 Ischemic stroke (IS), a leading cause of global disability and mortality, is characterized by white matter damage and demyelination. Despite advances, the molecular mechanisms driving post-IS myelin pathology remain poorly understood, limiting therapeutic development. This study investigates key myelin-related genes (MRGs) and their regulatory networks to identify novel therapeutic targets. A transient middle cerebral artery occlusion (MCAO) model was established in C57BL/6 mice, with brain tissues collected at four timepoints (Sham0D, MCAO0D, MCAO7D, MCAO14D). Transcriptomic and proteomic sequencing were performed, followed by soft clustering (Mfuzz), functional enrichment (GO/KEGG), and ROC analysis to identify key MRGs. Competing endogenous RNA (ceRNA) networks were constructed, and drug prediction was conducted using the Comparative Toxicogenomics Database (CTD) and molecular docking. Expression validation was performed via qRT-PCR and Western blot. Integrated multi-omics analysis identified Wasf3 and Slc25a5 as key MRGs, enriched in mitochondrial respiration, calcium metabolism, and cytoskeletal regulation. The AUC values of the one-to-one model scores were all greater than 0.7, suggesting that Wasf3 and Slc25a5 were able to effectively discriminate between samples from different time points. A ceRNA network revealed critical interactions, including the Wasf3-mmu-miR-423-5p-H19 axis, linking apoptosis and myelin dysfunction. Drug prediction highlighted valproic acid (VPA) as a high-affinity binder for both genes (binding energies: - 4.2 and - 4.7 kcal/mol), suggesting its potential as a therapeutic candidate for IS. Experimental validation confirmed significant downregulation of Wasf3 mRNA (p <
  0.01) and protein (p = 0.069) post-IS, while Slc25a5 showed no significant changes, potentially due to sample size limitations. This study establishes Wasf3 and Slc25a5 as pivotal regulators of post-IS myelin pathology and proposes VPA as a promising therapeutic candidate to enhance remyelination. The findings underscore the utility of multi-omics approaches in bridging molecular mechanisms to clinical translation, offering new strategies for IS diagnosis and treatment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH