Perovskite solar cells (PSCs) have made significant progress in efficiency, but their long-term operational stability remains an important yet challenging issue. Here, a dual-site passivation coupling internal encapsulation strategy is developed by introducing 3,5-bis(trifluoromethyl)-benzenethiol (35BBT) at the perovskite (PVK)/hole transport layer (HTL) interface. 35BBT provides dual active sites containing sulfur (S) atoms and fluorine (F) atoms, where the S atoms in the sulfhydryl group and the F atoms in the trifluoromethyl group coordinate with unpaired Pb