Knowledge-distillation-inspired semi-supervised equalizer in high-speed IMDD systems.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Meihua Bi, Yuru Chen, Xiangmin Fang, Miao Hu, Guowei Yang

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Optics letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 707325

In this Letter, a knowledge-distillation-inspired cascaded multi-modulus algorithm-based deep neural network (KD-CMMA-DNN) scheme is proposed to achieve a high-performance semi-supervised equalizer in intensity-modulation and direct detection (IMDD) systems. In this scheme, a pretrained teacher model is utilized to assist the CMMA model by a specially designed distillation loss function, enabling the model to exhibit superior performance compared to a typical blind CMMA equalizer. The proposed KD-CMMA-DNN equalizer demonstrates significant effectiveness in the O-band PAM-4 IMDD system. We experimentally verified that the use of a KD-CMMA-DNN equalizer enabled the O-band 50-Gb/s PAM-4 transmission over a 25-km standard single-mode fiber to reach the 7% hard-decision forward error correction threshold. Meanwhile, the proposed scheme can eliminate the need for labeled data, significantly reducing system costs without performance degradation in comparison with the supervised DNN equalizer.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH