Sex steroid hormones such as progesterone play a pivotal role in reproductive functions and maintaining pregnancy
however, the impact of progesterone on the interaction between mother and embryo is unclear. Here, we demonstrate that the relationship between maternal progesterone and membrane progesterone receptor epsilon (mPRε) in adipose tissue regulates embryonic nutritional environment and growth after birth in mice. The activation of adipose mPRε by increased progesterone during pregnancy enhances maternal insulin resistance via prostaglandin production, efficiently providing glucose to embryos. Correspondingly, the offspring of mPRε-deficient mothers exhibited metabolic dysfunction, whereas mPRε-deficient mothers with high-fat diet-induced obesity exhibited improved insulin sensitivity. These findings establish the importance of progesterone as a nutritional regulator between mother and embryo. Additionally, mPRε may represent a modulator for treating pregnant glycemic control disorders such as gestational diabetes mellitus, as well as metabolic syndrome in offspring.