Symmetry imposes constraints on open quantum systems, affecting the dissipative properties in nonequilibrium processes. Superradiance is a typical example in which the decay rate of the system is enhanced via a collective system-bath coupling that respects permutation symmetry. Such a model has also been applied to heat engines. However, a generic framework that addresses the impact of symmetry in finite-time thermodynamics is not well established. Here, we show a symmetry-based framework that describes the fundamental limit of collective enhancement in finite-time thermodynamics. Specifically, we derive a general upper bound on the average jump rate, which quantifies the fundamental speed set by thermodynamic speed limits and trade-off relations. We identify the symmetry condition that achieves the obtained bound, and explicitly construct an open quantum system model that goes beyond the enhancement realized by the conventional superradiance model.