Bifurcations and collective states of Kuramoto oscillators with higher-order interactions and rotational symmetry breaking.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Roberto C Budzinski, Célia M Kuwana, Rene O Medrano-T, Antonio Mihara, Lyle E Muller

Ngôn ngữ: eng

Ký hiệu phân loại: 633.15 *Com

Thông tin xuất bản: United States : Chaos (Woodbury, N.Y.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 707544

We study a network of identical Kuramoto oscillators with higher-order interactions that also break the rotational symmetry of the system. To gain analytical insights into this model, we use the Watanabe-Strogatz Ansatz, which allows us to reduce the dimensionality of the original system of equations. The study of stability and bifurcations of the reduced system reveals a codimension two Bogdanov-Takens bifurcation and several other associated bifurcations. Such analysis is corroborated by numerical simulations of the associated Kuramoto system, which, in turn, unveils a variety of collective behaviors such as synchronized motion, oscillation death, chimeras, incoherent states, and traveling waves. Importantly, this system displays a case where alternating chimeras emerge in an indistinguishable single population of oscillators, which may offer insights into the unihemispheric slow-wave sleep phenomenon observed in mammals and birds.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH