Biological age prediction using a DNN model based on pathways of steroidogenesis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kenji Mizuguchi, Toshifumi Takao, Qiuyi Wang, Zi Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 809.008 History and description with respect to kinds of persons

Thông tin xuất bản: United States : Science advances , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 707586

Aging involves the progressive accumulation of cellular damage, leading to systemic decline and age-related diseases. Despite advances in medicine, accurately predicting biological age (BA) remains challenging due to the complexity of aging processes and the limitations of current models. This study introduces a method for predicting BA using a deep neural network (DNN) based on pathways of steroidogenesis. We analyzed 22 steroids from 148 serum samples of individuals aged 20 to 73, using 98 samples for model training and 50 for validation. Our model reflects the often-overlooked fact that aging heterogeneity expands over time and uncovers sex-specific variations in steroidogenesis. This study leveraged key markers, including cortisol (COL), which underscore the role of stress-related and sex-specific steroids in aging. The resulting model establishes a biologically meaningful and robust framework for predicting BA across diverse datasets, offering fresh insights and supporting more targeted strategies in aging research and disease management.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH