NHANES-based machine learning for cognitive impairment classification and blood and hearing threshold characterization in age-related hearing loss.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ruilin Li, Shuimei Li, Shuhong Qin, Wenjuan Wang, Chenxingzi Wu, Zhanhang Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 368.122 *Disaster insurance

Thông tin xuất bản: United States : Geriatric nursing (New York, N.Y.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 707831

OBJECTIVE: This study aims to develop a machine learning-based classification model for cognitive impairment (CI) in elderly deaf patients and analyze the contributions of blood indices and hearing characteristics in identifying CI. METHODS: Blood and audiometric data from 833 elderly deaf patients across three NHANES cycles were used to build a classification model with five algorithms: Logistic Regression, Random Forest (RF), XGBoost, Artificial Neural Networks (ANN), and Support Vector Machine (SVM). The optimal model was selected to rank feature importance. RESULTS: The RF model, with an AUC of 0.834, performed best. Key predictors of CI included gender, systolic blood pressure, PTA+3kHz, neutrophil percentage, calcium, 6kHz hearing threshold, glycated hemoglobin, lymphocyte count,etc. CONCLUSION: Hematological markers and hearing thresholds, especially the 3kHz threshold, are significant in identifying CI in ARHL, suggesting the need for further clinical exploration.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH