Bone tissue engineering has emerged as a promising approach to address the challenges of bone fracture repair and regeneration. The application of external stimuli (mechanical and electrical) can drive specific cellular responses and osteogenic differentiation, leading to the development of more effective treatments. Piezoelectric materials modulate cellular proliferation and osteogenic differentiation under both static (without mechanical stimulation) and dynamic (with mechanical stimulation) conditions, activating distinct gene expression pathways. In this work, we investigate the combinatorial effect of poly (vinylidene fluoride) (PVDF) poled and non-poled films, and low-intensity pulsed ultrasound (LIPUS) on early-stage osteogenic differentiation of mouse pre-osteoblasts. Static culture with PVDF poled films enhanced Runx2 and Col1α1 expression without impacting alkaline phosphatase (ALP) activity. Inhibition of ERK phosphorylation using U0126 in PVDF poled films resulted in a ~ 6-8-fold increase in ALP activity, suggesting the involvement of an alternative pathway in osteogenic differentiation. Dynamic culture with LIPUS generated an electric potential of approximately 500 mV across PVDF films and an electrical field of 0-10 mV mm