Viral infections during pregnancy represent a major threat to maternal, fetal, and neonatal health outcome, with a high risk of vertical transmission. It is therefore crucial to understand the mechanisms underlying the interaction between viruses and placenta, which ensures communication between maternal and fetal compartments throughout pregnancy. Human placental models, both in vitro and ex vivo, enable to dissect in detail these interactions. By studying in detail viral entry, replication, and immune responses within the placenta, they represent ideal tools for analyzing the effects of various viruses on pregnancy outcomes. In addition, these models serve as platforms for evaluating diagnostic and therapeutic approaches to protect pregnant women and their babies from viral infections. This review examines recent advances, the main advantages and limitations of different human placental models and discusses their potential to improve our understanding of virus-placenta interactions, thereby contributing to improved maternal and fetal health.