BERT-AmPEP60: A BERT-Based Transfer Learning Approach to Predict the Minimum Inhibitory Concentrations of Antimicrobial Peptides for

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jianxiu Cai, François-Xavier Campbell-Valois, Shirley W I Siu, Chonwai Un, Yapeng Wang, Jielu Yan

Ngôn ngữ: eng

Ký hiệu phân loại: 267.61 Interdenominational and nondenominational associations

Thông tin xuất bản: United States : Journal of chemical information and modeling , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 708301

Antimicrobial peptides (AMPs) are a promising alternative for combating bacterial drug resistance. While current computer prediction models excel at binary classification of AMPs based on sequences, there is a lack of regression methods to accurately quantify AMP activity against specific bacteria, making the identification of highly potent AMPs a challenge. Here, we present a deep learning method, BERT-AmPEP60, based on the fine-tuned Bidirectional Encoder Representations from Transformers (BERT) architecture to extract embedding features from input sequences. Using the transfer learning strategy, we built regression models to predict the minimum inhibitory concentration (MIC) of peptides for
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH