Irisin alleviates steroid-induced vascular dysfunction by regulating the αVβ5-c-Abl-Caveolin-1 signaling pathway.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiazheng Chen, Yuguo Chen, Lijun Fang, Hongmei Gao, Wenqiang Li, Ruijuan Lv, Linmao Lyu, Pengqi Wang, Wei Wang, Feng Xu, Xinzhi Zhang, Hua Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : Biochemical pharmacology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 708444

Steroid-induced avascular necrosis of the femoral head (SANFH) is a progressive degenerative disease of the hip, primarily due to glucocorticoid (GC)-induced endothelial cell (EC) injury and compromised blood supply. Irisin is an EC-protective mytokine whose receptor is the integrin αVβ5. Caveolin-1 (CAV-1), a major component of caveolae, causes endothelial dysfunction when phosphorylated. However, the role of irisin and CAV-1 in SANFH remains unclear. In our study, irisin levels decreased but CAV-1 phosphorylation increased in human and mouse SANFH samples. Intraperitoneal irisin injection (250 μg/kg daily) notably reduced GC-induced osteonecrosis, vascular abnormalities, and CAV-1 phosphorylation in SANFH mice. In cultured ECs, GC induced CAV-1 phosphorylation by activating c-Abl via the glucocorticoid receptor, and irisin inhibited GC-induced phosphorylation of c-Abl and CAV-1 via the integrin αVβ5. Inhibition of integrin αVβ5 also abolished the protective effects of irisin on ERK and eNOS signalling, viability, angiogenesis, and migration in ECs. Therefore, our findings indicate that irisin has a protective role against vascular dysfunction in SANFH, possibly mediated by the inhibition of GC-triggered c-Abl-CAV-1 phosphorylation through integrin αVβ5. These findings provide insights into the potential therapeutic applications of irisin in SANFH.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH