Mechanisms of toxicity caused by bisphenol analogs in human in vitro cell models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ramon Lavado, Rafia Afroze Rifa, Macarena Gisele Rojo

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Ireland : Chemico-biological interactions , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 708453

Bisphenol analogs, structurally similar to bisphenol A (BPA), are widely used in various industries as a safer alternative to BPA. However, these alternatives also present risks, such as inflammation and potential connections to chronic diseases like cancer and diabetes, highlighting the need for further research into their toxicity mechanisms. Building on our previous cytotoxicity research, this study delves into the mechanisms of toxicity associated with bisphenol analogs (bisphenol AF, bisphenol AP, bisphenol E, and bisphenol P) on human in vitro cell models (HepaRG, Caco-2, HMC3, and HMEC-1). In this study, we assessed the impact of these compounds on key cellular stress markers: reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), and mitochondrial calcium levels. Results revealed dose-dependent increases in oxidative stress and decrease in mitochondrial membrane potential (ΔΨm), with Caco-2 cells (enterocytes) exhibiting the highest sensitivity, indicating tissue-specific vulnerability. Notably, bisphenol AF, bisphenol AP and bisphenol P were identified as the most potent analogs in inducing ROS, affecting mitochondrial integrity and calcium homeostasis among all cell models. This research highlights the importance of understanding analog-specific and cell-specific responses to bisphenol compounds, providing a foundation for improved regulatory strategies to mitigate health risks associated with their exposure.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH