The antioxidant 6PPD and its oxidized product 6PPD-Quinone (6PPDQ) have attracted considerable attention due to their various acute toxicities to aquatic organisms. However, the chronic toxicity of two compounds in aquatic animals is still unknown. Here, adult zebrafish were exposed to 6PPD and 6PPDQ at environmentally relevant concentrations (20 μg/L) for 28 days, and histological analysis showed that 6PPD caused more severe hepatic vacuolization than 6PPDQ. Meanwhile, 6PPD induced more serious lipid accumulation and a higher increase in triglyceride and total cholesterol levels than 6PPDQ, suggesting higher hepatotoxicity of 6PPD. Furthermore, transcriptomic analysis revealed that both compounds disturbed glucolipid metabolism to different degrees by altering the expression of different peroxisome proliferator-activated receptors (PPARs), in which 6PPD inhibited gene expressions in glucolipid metabolism possibly by PPARα, PPARβ and RXR, while 6PPDQ disrupted the expressions of partial genes in similar pathways probably via PPARγ. Additionally, 6PPD but not 6PPDQ increased Fe