ETHNOPHARMACOLOGICAL RELEVANCE: Danlou Tablet (DLP) was developed from the "Gualou-Xiebai-Baijiu decoction", as documented in the "Synopsis of the Golden Chamber" by Dr. Zhongjing Zhang. It is widely used for clinical treatment of different degrees of coronary heart disease (CHD). AIM: Clinical trials confirmed that DLP can reduce myocardial cell apoptosis and the area of myocardial infarction, as well as protect ischemic myocardium during acute myocardial infarction (AMI). This study aims to explore the potential active components of DLP in the prevention of AMI. MATERIALS AND METHODS: A mouse model of high fat and high cholesterol diets combined with myocardial infarction was used to evaluate the efficacy of DLP. Non-targeted metabolomics and transcriptomics were performed to characterize key candidate metabolic pathways for AMI process. Additionally, a series of arachidonic acid and ARA-related oxylipins were quantitatively analyzed by ultra-high performance liquid chromatogram tandem mass spectrometry. In-sillco molecular docking assays and hypoxia/reoxygenation (H/R)-induced myocardial injury model were performed to investigate the active components of DLP. RESULTS: DLP significantly decreased blood lipid levels and fat/body weight ratios. From a pathological perspective, DLP markedly improved the arrangement and morphology of cardiac myocytes in mice, and reduced myocardial fibrosis, plaque formation, and the ischemia damage. The ARA pathway plays a crucial role in the progression of AMI. The perturbed ARA metabolome was partly restored with treatment of DLP. The generation of 12-HETE mediated by lipoxygenase 12 (ALOX12) was considered as the most distinct metabolite. DLP can significantly inhibit the expression of ALOX12 gene and protein in mouse heart tissues. Further, H/R modeling led to obvious elevation of ALOX12 protein, and mirificin, daidzin, daidzein, and calycosin could significantly reduce the level of ALOX12 in H/R-induced H9c2 myocardial injury model. And these four components can also effectively drop H/R-induced apoptosis by the BCL-2/BAX pathway. Moreover, after ALOX12 protein was silenced in H/R-induced H9c2 cells, mirificin and daidzin resulted in no alterations of apoptotic ratios, while daidzein and calycosin brought obvious decline in apoptotic cells. CONCLUSION: These results indicates that mirificin and daidzin are the main DLP-related active components responsible for alleviating AMI by improving ALOX12 protein expression and the BCL-2/BAX pathway.