Delayed motor development is an early clinical sign of Fetal Alcohol Spectrum Disorders (FASD). However, changes at the neural circuit level that underlie early motor differences are underexplored. The striatum, the principal input nucleus of the basal ganglia, plays an important role in motor learning in adult animals, and the maturation of the striatal circuit has been associated with the development of early motor behaviors. Here, we briefly exposed pregnant C57BL/6 dams to ethanol (5% w/w) in a liquid diet on embryonic days (E)13.5-16.5, and assessed the mouse progeny using a series of 9 brief motor behavior tasks on postnatal days (P)2-14. Live brain slices were then obtained from behaviorally-tested mice for whole cell-voltage and current clamp electrophysiology to assess GABAergic/glutamatergic synaptic activity, and passive/active properties in two populations of striatal neurons: GABAergic interneurons and spiny striatal projection neurons. Electrophysiologically-recorded spiny striatal projection neurons were also filled intracellularly with biocytin for