Food authenticity and food safety issues have threatened the prosperity of the entire community. The phenomenon of selling porcini mushrooms as old mixed with new jeopardizes consumer safety. Herein, nucleoside contents and spectra of 831 Boletus bainiugan stored for 0, 1 and 2 years are comprehensively analyzed by high performance liquid chromatography (HPLC) coupled with Fourier transform near infrared (FT-NIR) spectroscopy. Guanosine and adenosine increased with storage time, and uridine has a decreasing trend. Multi-conventional machine learning and deep learning models are employed to identify the storage time of Boletus bainiugan, in which convolutional neural network (CNN) and back propagation neural network (BPNN) models have superior identification performance for distinct storage periods. The Data-driven soft independent modelling of class analogy (DD-SIMCA) model can completely differentiate between new and old samples, and partial least squares regression (PLSR) can accurately predict the three nucleoside compounds with an optimal R