Epigenetic regulation of the inflammatory response in stroke.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qian Li, Zixiao Li, Jingyi Liang, Fei Yang

Ngôn ngữ: eng

Ký hiệu phân loại: 658.32259 Personnel management (Human resource management)

Thông tin xuất bản: India : Neural regeneration research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 709400

Stroke is classified as ischemic or hemorrhagic, and there are few effective treatments for either type. Immunologic mechanisms play a critical role in secondary brain injury following a stroke, which manifests as cytokine release, blood-brain barrier disruption, neuronal cell death, and ultimately behavioral impairment. Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models. However, in clinical trials of anti-inflammatory agents, long-term immunosuppression has not demonstrated significant clinical benefits for patients. This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair, as well as the complex pathophysiologic inflammatory processes in stroke. Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies. Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke. Furthermore, epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management. In this review, we summarize current findings on the epigenetic regulation of the inflammatory response in stroke, focusing on key signaling pathways including nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase as well as inflammasome activation. We also discuss promising molecular targets for stroke treatment. The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke, leading to improved post-stroke outcomes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH