Analysis of multi-condition single-cell data with latent embedding multivariate regression.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Constantin Ahlmann-Eltze, Wolfgang Huber

Ngôn ngữ: eng

Ký hiệu phân loại: 599.073 Collections of living mammals

Thông tin xuất bản: United States : Nature genetics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 709585

Identifying gene expression differences in heterogeneous tissues across conditions is a fundamental biological task, enabled by multi-condition single-cell RNA sequencing (RNA-seq). Current data analysis approaches divide the constituent cells into clusters meant to represent cell types, but such discrete categorization tends to be an unsatisfactory model of the underlying biology. Here, we introduce latent embedding multivariate regression (LEMUR), a model that operates without, or before, commitment to discrete categorization. LEMUR (1) integrates data from different conditions, (2) predicts each cell's gene expression changes as a function of the conditions and its position in latent space and (3) for each gene, identifies a compact neighborhood of cells with consistent differential expression. We apply LEMUR to cancer, zebrafish development and spatial gradients in Alzheimer's disease, demonstrating its broad applicability.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH