Drug-loaded dissolvable microarray patches (MAP) have gained significant attention due to their patient-friendly, economical, and environmentally beneficial attributes. Despite extensive research and advancements, only a limited number of MAP have progressed to clinical trials. While existing literature predominantly covers the initial stages of MAP development (e.g., manufacturing techniques, materials, design), there remains a notable gap in examining an experimental design during preclinical evaluation phase undertaken to inform progression to clinical studies. To address this gap, we present a comprehensive review of the experimental factors influencing MAP performance in preclinical research. Our in-depth analysis of the skin environment and its implications to in vitro MAP performance revealed that skin insertion methodology, media used for release and permeation testing, skin models for permeation studies, and skin metabolism are key factors that need to be considered. We critically assess current research trends and propose potential optimisations to enhance efficacy and biorelevance of in vitro methods for MAP. Additionally, we review factors influencing in vivo and in silico performance, underscoring the promising potential of in silico approaches. This article aims to provide insights that will facilitate the development and standardisation of reliable methodologies in preclinical studies of drug-loaded MAP, ultimately advancing their clinical translation.