BACKGROUND: Silicosis is a chronic fibrotic pulmonary disease caused by consistent inhalation of respirable crystalline-free silica dust. The senescence of alveolar epithelial type II cells (ATII) is considered the initiation of pulmonary fibrosis. As a secreted protein, growth differentiation factor 15 (GDF15) was found intimately associated with the severity of lung diseases via senescence. Therefore, we speculate that GDF15 may involved in silica-induced pulmonary fibrosis. METHODS: Co-culture was performed to observe the pro-fibrotic effect of GDF15, which is secreted from the silica-induced senescence ATII cells, on peripheral effector cells. We further explored GDF15-related signaling pathways via ChIP and IP assays. GDF15 siRNA lipid nanoparticles, anti-aging compound β-nicotinamide mononucleotide (NMN), and the Chinese traditional drug Bazibushen (BZBS) were used individually to intervene silicosis progress. RESULTS: SiO CONCLUSIONS: Our results elucidate that senescence ATII cell-secreted GDF15 plays a vital role in promoting silicosis by influencing surrounding cells, and provides scientific clues for the selection of potential therapeutic drugs for silicosis.