Cadmium (Cd) contamination in soils poses a critical environmental challenge, jeopardizing both agricultural productivity and food safety. The utilization of plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy for mitigating the adverse effects of heavy metal stress on plant health and development. This study investigates the effectiveness of Enterobacter hormaechei X20 in enhancing Cd tolerance in perennial ryegrass, a species renowned for its phytoremediation potential. Strain X20 demonstrated multiple PGPR traits, including phosphate solubilization, indole-3-acetic acid (IAA) production, and siderophore secretion. Under Cd stress, X20 significantly stimulated plant growth, elevated canopy height, and preserved leaf water content. Additionally, X20 inoculation enhanced Cd uptake and reestablished ion homeostasis by augmenting Fe