Therapy resistance is a major barrier to achieving a cure in cancer patients, often resulting in relapses and mortality. Heat shock proteins (HSPs) are a group of evolutionarily conserved proteins that play a prominent role in the progression of cancer and drug resistance. HSP synthesis is upregulated in cancer cells, facilitating adaptation to various tumor microenvironment (TME) stressors, including nutrient deprivation, exposure to DNA-damaging agents, hypoxia, and immune responses. In this review, we present background information about HSP-mediated cancer therapy resistance. Within this context, we emphasize recent progress in the understanding of HSP machinery, exploring the therapeutic potential of HSPs in cancer treatment.