Oligonucleotide therapeutics (ONTs) represent a rapidly evolving modality for cancer treatment, capitalizing on their ability to modulate gene expression with high specificity. With more than 20 nucleic acid-based therapies that gained regulatory approval, advances in chemical modifications, sequence optimization, and novel delivery systems have propelled ONTs from research tools to clinical realities. ONTs, including siRNAs, antisense oligonucleotides, saRNA, miRNA, aptamers, and decoys, offer promising solutions for targeting previously "undruggable" molecules, such as transcription factors, and enhancing cancer immunotherapy by overcoming tumor immune evasion. The promise of ONT application in cancer treatment is exemplified by the recent FDA approval of the first oligonucleotide-based treatment to myeloproliferative disease. At the same time, there are challenges in delivering ONTs to specific tissues, mitigating off-target effects, and improving cellular uptake and endosomal release. This review provides a comprehensive overview of ONTs in clinical trials, emerging delivery strategies, and innovative therapeutic approaches, emphasizing the role of ONTs in immunotherapy and addressing hurdles that hinder their clinical translation. By examining advances and remaining challenges, we highlight opportunities for ONTs to revolutionize oncology and enhance patient outcomes.