Natural wound dressings have attracted substantial interest among researchers due to their biocompatible, bioactive, and eco-friendly properties. This paper focuses on introducing the bio-engineered bilayer design, fabrication, and characterizations of a Calophyllum inophyllum seed oil (CIO) - loaded scaffold within a polyvinyl alcohol/sodium alginate (PVA/SA) matrix, fortified with Hsiantsao aqueous extract. The scaffold - consisting of a semi-hydrophobic hydrogel and a hydrophilic nanofiber - was successfully synthesized using polymerization and centrifugal electrospinning techniques. Engineered to create a synergistic effect
physiologically, the fabricated bilayer scaffold demonstrated increased flexibility in the stress-strain curve via elongation
it also exhibited prompt high water absorption and maintained a neutral pH value (7.125 to 7.325). Chemically, the scaffold showed superior biocompatibility, robust antioxidants (82.19 % ± 0.08 in DPPH scavenging, 90.23 % ± 0.22 in ABTS scavenging), and confirmed antimicrobial activities. In a rat wound model, the CIO-loaded PVA/SA/Hsiantsao scaffold markedly improved wound healing by day 15, reaching a wound closure rate of 98.22 % ± 0.82. Also, the scaffold degraded up to 47 % in vitro within a month, indicating its eco-friendly characteristics. From these findings, this study underscores the potential of the bilayer CIO-loaded PVA/SA/Hsiantsao scaffold as an advanced wound care dressing, setting the stage for prospective clinical applications.