BACKGROUND: Understanding the intricate tumor microenvironment (TME) is crucial for elucidating the mechanisms underlying the progression of cervical squamous cell carcinoma (CSCC) and its response to anti-PD-1 therapy. METHODS: In this study, we characterized 50,649 cells obtained from the CSCC for single-cell RNA sequencing and integrated bulk sequencing data from The Cancer Genome Atlas (TCGA) and clinical samples to explore their cell composition, metabolic processes, signaling pathways, specific transcription factors, lineage tracking and response to immunotherapy. In vivo experiments were performed to validate the function of key cell subsets. RESULTS: We identified ten major cell type and 35 subsets of stromal and immune cells in TME and observed distinct patterns in the metabolic processes and signaling pathways of these cells between tumor and normal tissues. Furthermore, PCNA clamp-associated factor (PCLAF) CONCLUSION: Our findings illuminate the heterogeneity of the complex TME in CSCC and offer evidence supporting PCLAF