MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zaiyi Liu, Xiaoke Ma, Yu Wang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Genome medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 711826

Spatially resolved transcriptomics (SRT) simultaneously measure spatial location, histology images, and transcriptional profiles of cells or regions in undissociated tissues. Integrative analysis of multi-modal SRT data holds immense potential for understanding biological mechanisms. Here, we present a flexible multi-modal contrastive learning for the integration of SRT data (MuCST), which joins denoising, heterogeneity elimination, and compatible feature learning. MuCST accurately identifies spatial domains and is applicable to diverse datasets platforms. Overall, MuCST provides an alternative for integrative analysis of multi-modal SRT data ( https://github.com/xkmaxidian/MuCST ).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH