Reviving hope: unlocking pancreatic islet immortality by optimizing a trehalose-based cryopreservation media and cell-penetrating peptide.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Roshanak Amirian, Hossein Derakhshankhah, Ensiyeh Hajizadeh-Saffar, Zhila Izadi, Zakieh Samsonchi, Lobat Tayebi

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Stem cell research & therapy , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 711945

BACKGROUND: Diabetes mellitus remains a pervasive global health concern, urging a deeper exploration of islet transplantation as a potential enduring solution. The efficacy of this therapeutic approach pivots on the precision of cryopreservation techniques, ensuring both the viability and accessibility of pancreatic islets. This study delves into the merits of cryopreserving these islets using the disaccharide trehalose, accompanied by an inventive strategy involving poly L proline (PLP) as a cell-penetrating peptide to overcome the cryoprotectant limitations inherent to trehalose. METHODS: In our experiments with rat islets, we conducted meticulous viability assessments for fresh and frozen samples. We employed a spectrum of methods, including live/dead staining, insulin/glucagon staining, and measurement of reactive oxygen species (ROS) levels. To gauge functional integrity, we executed glucose-stimulated insulin secretion tests. Subsequently, we transplanted thawed islets into diabetic mice to scrutinize their performance in clinically relevant conditions. RESULTS: Our study yielded compelling results, affirming the successful cryopreservation of pancreatic islets using trehalose and PLP. Viability, as corroborated through live/dead and insulin/glucagon staining, underscored the sustained preservation of frozen islets. Moreover, these preserved islets exhibited functional integrity by releasing insulin responsively to glucose stimulation. Significantly, upon transplantation into diabetic mice, the thawed islets proficiently restored euglycemia, evidenced by a substantial reduction in fasting blood glucose and an enhanced glucose tolerance. CONCLUSION: Our findings accentuate the potential of trehalose and PLP as sophisticated cryoprotectants for preserving pancreatic islets. Beyond highlighting viability and functionality, the preserved islets demonstrated a remarkable capacity to restore euglycemia post-transplantation. This research holds promise in addressing the inherent limitations of islet transplantation, particularly in the realm of Type 1 diabetes treatment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH