BACKGROUND: Diagnosing Mendelian and rare genetic conditions requires identifying phenotype-associated genetic findings and prioritizing likely disease-causing genes. This task is labor-intensive for molecular and clinical geneticists, who must review extensive literature and databases to link patient phenotypes with causal genotypes. The challenge is further complicated by the large number of genetic variants detected through next-generation sequencing, which impacts both diagnosis timelines and patient care strategies. To address this, in silico methods that prioritize causal genes based on patient-derived phenotypes offer an effective solution, reducing the time involved in diagnostic case reviews and enhancing the efficiency of clinical diagnosis. RESULTS: We developed the phenotype prioritization and analysis for rare diseases (PPAR) to rank genes based on human phenotype ontology (HPO) terms, with the specific goal of aiding the interpretation of genetic testing for Mendelian and rare diseases. PPAR leverages embeddings from a knowledge graph and incorporates knowledge from connections between genes, HPO terms, and gene ontology annotations. When applied on a clinical rare disease cohort and the publicly available deciphering developmental disorders (DDD) dataset. PPAR ranked the causal gene in the top 10 for 27% of cases in the clinical cohort and for 85% of cases in the DDD dataset, outperforming other established HPO-based methods. CONCLUSION: Our findings demonstrate that PPAR, a method developed from the clinical knowledge graph, effectively ranks causal genes based on patient-derived HPO terms in rare and Mendelian disease contexts. PPAR has shown superior performance compared to other well-established HPO-only methods and provides an efficient, accessible solution for clinical geneticists. The Python-based tool is publicly available at https://github.com/dimi-lab/PPAR , offering a user-friendly platform for gene prioritization.