Determining hydrogen positions in metal hydride clusters remains a formidable challenge, which relies heavily on unaffordable neutron diffraction. While machine learning has shown promise, only one deep learning-based method has been proposed so far, which relies heavily on neutron diffraction data for training, limiting its general applicability. In this work, we present an innovative strategy─SSW-NN (stochastic surface walking with neural network)─a robust, non-neutron diffraction-dependent technique that accurately predicts hydrogen positions. Validated against neutron diffraction data for copper hydride clusters, SSW-NN proved effective for clusters where only X-ray diffraction data or DFT predictions are available. It offers superior accuracy, efficiency, and versatility across different metal hydrides, including silver and alloy hydride systems, currently without any neutron diffraction references. This approach not only establishes a new research paradigm for metal hydride clusters but also provides a universal solution for hydrogen localization in other research fields constrained by neutron sources.