Postcharging antibacterials have shown good application prospects in combating bacterial infections through electrical interaction. Herein, manganese oxide nanosheets in situ grown on carbon fibers (CM) are designed to perform the integration of mechanical intervention and postcharging therapy for efficient bacterial killing. This electrode disrupts bacterial membranes via sharp-edged microstructures. After charging at a low voltage in an ultrashort time, the charged CM affects the extracellular electron transfer (EET) of bacteria during the discharge process to kill the bacteria. Due to the dual-antibacterial mode, after charging at -1 V (vs saturated calomel electrode, SCE) for only 50.4 ± 3 s, the bacteria lethality rates of the CM against