Naturally inspired chimeric quinolone derivatives to reverse bacterial drug resistance.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kang Chen, Wenteng Chen, Jiaying Chi, Yuhang He, Juncheng Lin, Chao Lu, Xiaoke Niu, Yixuan Ren, Peng Teng, Baohong Wang, Bo Wang, Kairong Wang, Luyao Wang, Qi Wen, Yanghui Xiang, Junqiu Xie, Yanqing Yang, Yongping Yu, Ying Zhang, Ruhong Zhou, Qi Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 636.7538 Dogs

Thông tin xuất bản: France : European journal of medicinal chemistry , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 713547

 Antimicrobial resistance poses an urgent threat to global health, underscoring the critical need for new antibacterial drugs. Ciprofloxacin, a third-generation quinolone antibiotic, is used to treat different types of bacterial infections
  however, it often results in the rapid emergence of resistance in clinical settings. Inspired by low susceptibility to antimicrobial resistance of natural antimicrobial peptides, we herein propose a host defense peptide-mimicking strategy for designing chimeric quinolone derivatives which may reduce the likelihood of antibacterial resistance. This strategy involves the incorporation of deliberately designed amphiphilic moieties into ciprofloxacin to mimic the structural characteristics and resistance-evading properties of host defense peptides. A resulting chimeric compound IPMCL-28b, carrying a rigid linker and three cationic amino acids along with a lipophilic acyl n-decanoyl tail, exhibited potent activity against a panel of multidrug-resistant bacterial strains by endowing the ciprofloxacin derivatives with additional ability to disrupt bacterial cell membranes. Molecular dynamics simulations showed that IPMCL-28b demonstrates significantly stronger disruptive interactions with cell membranes than ciprofloxacin. This compound not only demonstrated high selectivity with low hemolysis side effect, but also significantly reduced the likelihood of resistance development compared with ciprofloxacin. Excitingly, IPMCL-28b demonstrated highly enhanced in vivo antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with a 99.99 % (4.4 log) reduction in skin bacterial load after a single dose. These findings highlight the potential of host defense peptides-mimicking amphiphilic ciprofloxacin derivatives to reverse antibiotic resistance and mitigate the development of antimicrobial resistance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH