Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures across the Alzheimer disease continuum.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Miquel Aguilar, Muhammad Ali, Ignacio Alvarez, Aleksandra Beric, John Budde, Carlos Cruchaga, Anh Do, Jen Gentsch, Yann Le Guen, Gyujin Heo, David M Holtzman, Laura Ibanez, Rana R Khalid, Menghan Liu, John C Morris, Hamilton Oh, Pau Pastor, David J Pulford, Chloe Robins, Agustin Ruiz, Jarod Rutledge, Suzanne E Schindler, Yun Ju Sung, Rawan Tarawneh, Jigyasha Timsina, Lihua Wang, Daniel Western, Edward N Wilson, Tony Wyss-Coray

Ngôn ngữ: eng

Ký hiệu phân loại: 956.5 *East central Turkey

Thông tin xuất bản: United States : Neuron , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 713620

 Changes in β-amyloid (Aβ) and hyperphosphorylated tau (T) in brain and cerebrospinal fluid (CSF) precede Alzheimer's disease (AD) symptoms, making the CSF proteome a potential avenue to understand disease pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 analytes (2,029 unique proteins) dysregulated in AD. Of these, 865 (43%) were previously reported, and 1,164 (57%) are novel. The identified proteins cluster in four different pseudo-trajectories groups spanning the AD continuum and were enriched in pathways including neuronal death, apoptosis, and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfunction (mid stages), brain plasticity and longevity (mid stages), and microglia-neuron crosstalk (late stages). Using machine learning, we created and validated highly accurate and replicable (area under the curve [AUC] >
  0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH