Although transparent paper derived from cellulose has been successfully demonstrated as an inexpensive, renewable and biodegradable substrate used for flexible electronics, the inherently stiff characteristic and intrinsic poor conductivity of the cellulose paper inevitably hinders its application in stretchable electronic devices. Herein, we report a new avenue for construction of highly stretchable, transparent, and ionic conductive cellulose gel paper via glycerol inducing plasticizing and CaCl