Late blight, caused by Phytophthora infestans (P. infestans), seriously compromises tomato growth and yield. PAMP-induced peptides (PIPs) are secreted peptides that act as endogenous elicitors, triggering plant immune responses. Our previous research indicated that the exogenous application of PIP1 from Solanum pimpinelifolium L3708, named SpPIP1, enhances tomato resistance to P. infestans. However, little is known about the roles of additional family members in tomato resistance to P. infestans. In addition, there remains a significant gap in understanding the receptors of SpPIPs and the transcription factors (TFs) that regulate SpPIPs signaling in tomato defense, and the combination of SpPIPs signaling and TFs in defending against pathogens is rarely studied. This study demonstrates that the exogenous application of SpPIP-LIKE1 (SpPIPL1) also strengthens tomato resistance by affecting the phenylpropanoid biosynthesis pathway. Both SpPIP1 and SpPIPL1 trigger plant defense responses in a manner dependent on RLK7L. Tomato plants overexpressing the precursors of SpPIP1 and SpPIPL1 (SpprePIP1 and SpprePIPL1) exhibited enhanced expression of pathogenesis-related genes, elevated H