Development and validation of a prediction model for malignant sinonasal tumors based on MR radiomics and machine learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qinghe Han, Yang Song, Yuchen Wang, Baohong Wen, Junfang Xian, Bingbing Yang, Chen Zhang, Luo Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : European radiology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 715385

 OBJECTIVES: This study aimed to utilize MR radiomics-based machine learning classifiers on a large-sample, multicenter dataset to develop an optimal model for predicting malignant sinonasal tumors and tumor-like lesions. METHODS: This study included 1711 adult patients (875 benign and 836 malignant) with sinonasal tumors or tumor-like lesions from three institutions. Patients from institution 1 (n = 1367) constituted both the training and validation cohorts, while those from institution 2 and 3 (n = 158/186) made up the test cohorts. Manual segmentation of the region of interest of the tumor was performed on T1WI, T2WI, and contrast-enhanced T1WI (CE-T1WI). Data normalization, dimensional reductions, feature selection, and classifications were performed using ten machine-learning classifiers. Four fusion models, namely T1WI + T2WI, T1WI + CE-T1WI, T2WI + CE-T1WI, and T1WI + T2WI + CE-T1WI, were constructed using the top ten features with the highest contribution in feature selection in the optimal models of T1WI, T2WI, and CE-T1WI. The Delong test compared areas under the curve (AUC) between models. RESULTS: The AUCs of training/validation/test1/test2 datasets for T1WI, T2WI, and CE-T1WI were 0.900/0.842/0.872/0.839, 0.876/0.789/0.842/0.863, and 0.899/0.824/0.831/0.707, respectively. The fusion model from T1WI + T2WI + CE-T1WI had the highest AUC. The AUCs of training/validation/test1/test2 datasets were 0.947/0.849/0.871/0.887. The T1WI + T2WI + CE-T1WI model demonstrated a significantly higher AUC than the T2WI + CE-T1WI model in both cohorts (p <
  0.05) and outperformed the T2WI model in test 1 (p = 0.008) and the T1WI model in test 2 (p = 0.006). CONCLUSIONS: This fusion model based on radiomics from T1WI + T2WI + CE-T1WI images and machine learning can improve the power in predicting malignant sinonasal tumors with high accuracy, resilience, and robustness. CLINICAL RELEVANCE STATEMENT: Our study proposes a radiomics-based machine learning fusion model from T1- and T2-weighted images and contrast-enhanced T1-weighted images, which can non-invasively identify the nature of sinonasal tumors and improve the performance in predicting malignant sinonasal tumors. KEY POINTS: Differentiating benign and malignant sinonasal tumors is difficult due to similar clinical presentations. A radiomics model from T1 + T2 + contrast-enhanced T1 images can identify the nature of sinonasal tumors. This model can help distinguish benign and malignant sinonasal tumors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH