FAMF-Net: Feature Alignment Mutual Attention Fusion With Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qian Chen, Lei Dong, Wei Jiang, Baiying Lei, Jinyao Li, Yiyao Liu, Jing Qin, Tianfu Wang, Yongtao Zhang, Cheng Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : IEEE transactions on medical imaging , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 715468

Automatic and accurate classification of breast cancer in multimodal ultrasound images is crucial to improve patients' diagnosis and treatment effect and save medical resources. Methodologically, the fusion of multimodal ultrasound images often encounters challenges such as misalignment, limited utilization of complementary information, poor interpretability in feature fusion, and imbalances in sample categories. To solve these problems, we propose a feature alignment mutual attention fusion method (FAMF-Net), which consists of a region awareness alignment (RAA) block, a mutual attention fusion (MAF) block, and a reinforcement learning-based dynamic optimization strategy(RDO). Specifically, RAA achieves region awareness through class activation mapping and performs translation transformation to achieve feature alignment. When MAF utilizes a mutual attention mechanism for feature interaction fusion, it mines edge and color features separately in B-mode and shear wave elastography images, enhancing the complementarity of features and improving interpretability. Finally, RDO uses the distribution of samples and prediction probabilities during training as the state of reinforcement learning to dynamically optimize the weights of the loss function, thereby solving the problem of class imbalance. The experimental results based on our clinically obtained dataset demonstrate the effectiveness of the proposed method. Our code will be available at: https://github.com/Magnety/Multi_modal_Image.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH