BACKGROUND & AIMS: The tumor microenvironment (TME) plays a crucial role in the limited efficacy of existing treatments for hepatocellular carcinoma (HCC), with tumor-associated endothelial cells (TECs) serving as fundamental TME components that substantially influence tumor progression and treatment efficacy. However, the precise roles and mechanisms of TECs in HCC remain inadequately understood. METHODS: We employed a multi-omics profiling strategy to investigate the single-cell and spatiotemporal evolution of TECs within the microenvironment of HCC tumors, showcasing varied responses to immunotherapy. Through an analysis of a clinical cohort of patients with HCC, we explored the correlation between TEC subpopulations and immunotherapy outcomes. The influence of TEC subsets on the immune microenvironment was confirmed through comprehensive in vitro and in vivo studies. To further explore the mechanisms of distinct TEC subpopulations in microenvironmental modulation and their impact on immunotherapy, we utilized TEC subset-specific knockout mouse models as well as humanized mouse models. RESULTS: In this study, we identified a new subset of CXCL12 CONCLUSIONS: CXCL12 IMPACT AND IMPLICATIONS: This investigation reveals a pivotal mechanism wherein CXCL12