A Learnable Prior Improves Inverse Tumor Growth Modeling.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michal Balcerak, Ivan Ezhov, Leonhard Feiner, Sebastian Kaltenbach, Florian Kofler, Jonas Latz, Jana Lipkova, Sergey Litvinov, Laurin Lux, Bjoern Menze, Marie-Christin Metz, Daniel Rueckert, Jonas Weidner, Benedikt Wiestler

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : IEEE transactions on medical imaging , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 715556

Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH