Artificial intelligence guided search for van der Waals materials with high optical anisotropy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Aleksey V Arsenin, Liudmila A Bereznikova, Georgy A Ermolaev, Davit A Ghazaryan, Ivan A Kruglov, Arslan Mazitov, Anton Minnekhanov, Kostya S Novoselov, Maxim Povolotsky, Ivan Trofimov, Alexey P Tsapenko, Gleb Tselikov, Valentyn S Volkov, Congwei Xie

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Materials horizons , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 716010

The exploration of van der Waals (vdW) materials, renowned for their unique optical properties, is pivotal for advanced photonics. These materials exhibit exceptional optical anisotropy, both in-plane and out-of-plane, making them an ideal platform for novel photonic applications. However, the manual search for vdW materials with giant optical anisotropy is a labor-intensive process unsuitable for the fast screening of materials with unique properties. Here, we leverage geometrical and machine learning (ML) approaches to streamline this search, employing deep learning architectures, including the recently developed Atomistic Line Graph Neural Network. Within the geometrical approach, we clustered vdW materials based on in-plane and out-of-plane birefringence values and correlated optical anisotropy with crystallographic parameters. The more accurate ML model demonstrates high predictive capability, validated through density functional theory and ellipsometry measurements. Experimental verification with 2H-MoTe
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH