A Bioengineered Model of the Human Cornea for Preclinical Assessment of Human Ocular Exposure to Environmental Toxicants.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jeehan Chang, Yewhan Chung, Pouria Fattahi, Xing Gao, Ning Guo, Dan Dongeun Huh, Michelle Jung, Selice Jung, Se-Jeong Kim, Haijiao Liu, Minkyung Song, Zong Yao Tan, Mousa Younesi

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Advanced healthcare materials , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 716457

Here a bioengineered platform is introduced to investigate adverse effects of environmental materials on the human cornea. Using primary cells, this system is capable of reproducing the differentiated corneal epithelium and its underlying stroma in the human eye, which can then be treated with externally applied solid, liquid, or gaseous substances in a controlled manner and under physiologically relevant conditions. The proof-of-principle of how this system can be used to simulate human ocular exposure to different classes of environmental toxicants for direct visualization and quantitative analysis of their potential to induce acute corneal injury and inflammation is demonstrated. This model can also be further engineered to create an electromechanically actuated array of multiple human corneal tissues that can emulate spontaneous eye blinking. Using this advanced system, it is shown that blinking-like mechanical motions may play a protective role against adverse effects of environmental toxicants. This work yields an immediately deployable in vitro technology for screening ocular toxicity of existing and emerging environmental materials of various types and may enable the development of more realistic, human-relevant preclinical toxicology models complementary to traditional animal testing.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH