Examination of nonlinear longitudinal processes with latent variables, latent processes, latent changes, and latent classes in the structural equation modeling framework: The R package nlpsem.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jin Liu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Behavior research methods , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 716658

 We introduce the R package nlpsem (Liu, 2023), a comprehensive toolkit for analyzing longitudinal processes within the structural equation modeling (SEM) framework, incorporating individual measurement occasions. This package emphasizes nonlinear longitudinal models, especially intrinsic ones, across four key scenarios: (1) univariate longitudinal processes with latent variables, optionally including covariates such as time-invariant covariates (TICs) and time-varying covariates (TVCs)
  (2) multivariate longitudinal analyses to explore correlations or unidirectional relationships between longitudinal variables
  (3) multiple-group frameworks for comparing manifest classes in scenarios (1) and (2)
  and (4) mixture models for scenarios (1) and (2), accommodating latent class heterogeneity. Built on the OpenMx R package, nlpsem supports flexible model designs and uses the full information maximum likelihood method for parameter estimation. A notable feature is its algorithm for determining initial values directly from raw data, improving computational efficiency and convergence. Furthermore, nlpsem provides tools for goodness-of-fit tests, cluster analyses, visualization, derivation of p values and three types of confidence intervals, as well as model selection for nested models using likelihood-ratio tests and for non-nested models based on criteria such as Akaike information criterion and Bayesian information criterion. This article serves as a companion document to the nlpsem R package, providing a comprehensive guide to its modeling capabilities, estimation methods, implementation features, and application examples using synthetic intelligence growth data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH