Application of ATR-FTIR spectroscopy and multivariate statistical analysis in cancer diagnosis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lizheng Cai, Yisa Cai, Feng Jiang, Zhikun Liu, Nan Pang, Ao Song, Jun Wang, Chao Yang, Wanli Yang, Ruihua Yu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : SLAS technology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 716998

Lung cancer is one of the most prevalent and lethal malignant tumors worldwide. Currently, clinical diagnosis primarily relies on chest X-ray examinations, histopathological analysis, and the detection of tumor markers in blood. However, each of these methods has inherent limitations. The current study aims to explore novel diagnostic approaches for lung cancer by employing attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy in conjunction with multiple machine learning models. Fourier transform infrared spectroscopy can detect subtle differences in the material structures that reflect the carcinogenic process between lung cancer tissues and normal tissues. By applying principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to analyze infrared spectral data, these subtle differences can be amplified. The study revealed that the combination of spectral bands within the 3500-3000 cm
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH